Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
ACS Omega ; 9(18): 20042-20055, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38737051

RESUMEN

Drought is the worst environmental stress constraint that inflicts heavy losses to global food production, such as wheat. The metabolic responses of seeds produced overtransgenerational exposure to e[CO2] to recover drought's effects on wheat are still unexplored. Seeds were produced constantly for four generations (F1 to F4) under ambient CO2 (a[CO2], 400 µmol L-1) and elevated CO2 (e[CO2], 800 µmol L-1) concentrations, and then further regrown under natural CO2 conditions to investigate their effects on the stress memory metabolic processes liable for increasing drought resistance in the next generation (F5). At the anthesis stage, plants were subjected to normal (100% FC, field capacity) and drought stress (60% FC) conditions. Under drought stress, plants of transgenerational e[CO2] exposed seeds showed markedly increased superoxide dismutase (16%), catalase (24%), peroxidase (9%), total antioxidants (14%), and proline (35%) levels that helped the plants to sustain normal growth through scavenging of hydrogen peroxide (11%) and malondialdehyde (26%). The carbohydrate metabolic enzymes such as aldolase (36%), phosphoglucomutase (12%), UDP-glucose pyrophosphorylase (25%), vacuolar invertase (33%), glucose-6-phosphate-dehydrogenase (68%), and cell wall invertase (17%) were decreased significantly; however, transgenerational seeds produced under e[CO2] showed a considerable increase in their activities in drought-stressed wheat plants. Moreover, transgenerational e[CO2] exposed seeds under drought stress caused a marked increase in leaf Ψw (15%), chlorophyll a (19%), chlorophyll b (8%), carotenoids (12%), grain spike (16%), hundred grain weight (19%), and grain yield (10%). Hence, transgenerational seeds exposed to e[CO2] upregulate the drought recovery metabolic processes to improve the grain yield of wheat under drought stress conditions.

3.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637784

RESUMEN

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Asunto(s)
Alternaria , Nanopartículas del Metal , Quercus , Solanum lycopersicum , Plata/química , Nanopartículas del Metal/química , Antifúngicos , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Difracción de Rayos X , Antibacterianos
4.
Bot Stud ; 65(1): 4, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252177

RESUMEN

BACKGROUND: Recently, researchers are focusing on creating new tools to combat the antibiotic resistant bacteria and malignancy issues, which pose significant threats to humanity. Biosynthesized silver nanoparticles (AgNPs) are thought to be a potential solution to these issues. The biosynthesis method, known for its environmentally friendly and cost-effective characteristics, can produce small-sized AgNPs with antimicrobial and anticancer properties. In this study, AgNPs were bio-fabricated from the distilled water and methanolic extracts of Viburnum grandiflorum leaves. Physio-chemical characterization of the bio-fabricated AgNPs was conducted using UV-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction analysis. RESULTS: AgNPs produced from the methanol extract were smaller in size (12.28 nm) compared to those from the aqueous extract (17.77 nm). The bioengineered AgNPs exhibited a circular shape with a crystalline nature. These biosynthesized AgNPs demonstrated excellent bactericidal activity against both gram-negative (Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. Highest antibacterial activity was observed with the methanol extract against P. aeruginosa (14.66 ± 0.74 mm). AgNPs from the methanol extract also displayed the highest antioxidant activity, with an IC50 value of 188.00 ± 2.67 µg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Furthermore, AgNPs exhibited notable cytotoxic activity against Rhabdomyosarcoma cell line (RD cell) of human muscle cancer cell. The IC50 values calculated from the MTT assay were 26.28 ± 1.58 and 21.49 ± 1.44 µg/mL for AgNPs synthesized from aqueous and methanol extracts, respectively. CONCLUSION: The methanol extract of V. grandiflorum leaves demonstrates significant potential for synthesizing AgNPs with effective antibacterial, antioxidant, and anticancer actions, making them applicable in various biomedical applications.

5.
PeerJ ; 11: e16609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107576

RESUMEN

Parthenium weed poses significant threats to cropping systems, socioeconomic structures, and native ecosystems. The pronounced impact is primarily attributed to its rapid and efficient invasion mechanism. Despite that the detrimental effects of Parthenium weed are widely acknowledged, an in-depth scientific comprehension of its invasion mechanism, particularly regarding modifications in structural and functional attributes under natural conditions, is still lacking. To bridge this knowledge gap and formulate effective strategies for alleviating the adverse consequences of Parthenium weed, a study was conducted in the more cultivated and densely populated areas of Punjab, Pakistan. This study was focused on fifteen distinct populations of the star weed (Parthenium hysterophorus L.) to investigate the factors contributing to its widespread distribution in diverse environmental conditions. The results revealed significant variations in growth performance, physiological traits, and internal structures among populations from different habitats. The populations from wastelands exhibited superior growth, with higher accumulation of soluble proteins (TSP) and chlorophyll content (Chl a&b, TChl, Car, and Chl a/b). These populations displayed increased root and stem area, storage parenchyma, vascular bundle area, metaxylem area, and phloem area. Significant leaf modifications included thicker leaves, sclarification around vascular bundles, and widened metaxylem vessels. Roadside populations possessed larger leaf area, enhanced antioxidant activity, increased thickness of leaves in terms of midrib and lamina, and a higher cortical proportion. Populations found in agricultural fields depicted enhanced shoot biomass production, higher levels of chlorophyll b, and an increased total chlorophyll/carotenoid ratio. Additionally, they exhibited increased phloem area in their roots, stems, and leaves, with a thick epidermis only in the stem. All these outcomes of the study revealed explicit structural and functional modifications among P. hysterophorus populations collected from different habitats. These variations were attributed to the environmental variability and could contribute to the widespread distribution of this species. Notably, these findings hold practical significance for agronomists and ecologists, offering valuable insights for the future management of Parthenium weed in novel environments and contributing to the stability of ecosystems.


Asunto(s)
Asteraceae , Parthenium hysterophorus , Ecosistema , Antioxidantes/farmacología , Clorofila/farmacología
6.
Physiol Mol Biol Plants ; 29(8): 1205-1224, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37829703

RESUMEN

Cenchrus ciliaris L. is a perennial grass that can grow in a diverse range of habitats including challenging deserts. The purpose of the study was to investigate the impact of aridity on morpho-anatomical and physiological traits in C. ciliaris populations collected from arid and semi-arid areas of Punjab, Pakistan. The populations growing in extremely arid conditions displayed a range of structural and physiological adaptations. Under extremely dry conditions, root epidermal thickness (90.29 µm), cortical cell area (7677.78 µm2), and metaxylem cell area (11,884.79 µm2) increased while root pith cell area (2681.96 µm2) decreased in tolerant populations. The populations under extremely aridity maximized leaf lamina (184.21 µm) and midrib thickness (316.46 µm). Additionally, highly tolerant populations were characterized by the accumulation of organic osmolytes such as glycinebetaine (132.60 µmol g-1 FW) was increased in QN poulations, proline (118.01 µmol g-1 F.W) was maximum in DF populations, and total amino acids (69.90 mg g-1 FW) under extreme water deficit conditions. In arid conditions, abaxial stomatal density (2630.21 µm) and stomatal area (8 per mm2) were also reduced in DF populations to check water loss through transpiration. These findings suggest that various parameters are crucial for the survival of C. ciliaris in arid environments. The main strategies used by C. ciliaris was intensive sclerification, effective retention of ions, and osmotic adjustment through proline and glycinebetaine under arid conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01351-3.

7.
Environ Monit Assess ; 195(11): 1363, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874418

RESUMEN

Withania coagulans is a valuable medicinal plant with high demand, but its wild growth and local usage pose a threat to its natural habitat. This study aims to understand the plant's growth, anatomy, and physiology in different environmental conditions to aid in conservation and re-vegetation efforts. Fifteen differently adapted populations of Withania coagulans were collected from diverse ecological regions, viz., (i) along the roadside, (ii) hilly areas, (iii) barren land, and (iv) wasteland to unravel the adaptive mechanisms that are responsible for their ecological success across heterogenic environments of Punjab, Pakistan. The roadside populations had high values of photosynthetic pigments, total soluble proteins, root endodermis thickness, stem and leaf cortical thickness, and its cell area. The populations growing in hilly areas showed better growth performance such as vigorous growth and biomass production. Additionally, there was enhanced accumulation of organic osmolytes (glycine betaine and proline), chlorophyll content (chl a/b), and enlarged epidermal cells, cortical cells, vascular bundles, metaxylem vessels, and phloem region in roots. In case of stem area, epidermal thickness, cortical thickness, vascular bundle, and pith area showed improved growth. However, the barren land population showed significant increase in carotenoid contents, vascular bundle area, and metaxylem area in roots, and xylem vessels and phloem area in stems and leaves. The wasteland population surpassed the rest of the populations in having greater root dry weight, higher shoot ionic contents, increased root area, thick cortical, and vascular bundle area in roots. Likewise, cortical thickness and its cell area, and pith area in stems, whereas large vascular bundles, phloem region, and high stomatal density were recorded in leaves. Subsequently, natural populations showed the utmost behavior related to tissue organization and physiology in response to varied environmental conditions that would increase the distribution and survival of species.


Asunto(s)
Plantas Medicinales , Withania , Animales , Withania/metabolismo , Especies en Peligro de Extinción , Monitoreo del Ambiente , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
8.
J Biomol Struct Dyn ; : 1-10, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37793992

RESUMEN

This report examines the bio-fabrication of silver nanoparticles (Ag-NPs) utilizing AgNO3 and leaf extract of Crataegus monogyna as the precursor material. In order to maximize the antibacterial efficacy against Staphylococcus aureus, Proteus mirabilis, Klebsiella pneumoniae and Pseudomonas aeruginosa, the reaction conditions for the green fabrication of Ag-NPs were optimized. A one factor at a time approach (volume concentration of extract, volume concentration of AgNO3, pH and temperature) was used to optimize the best condition, and results were assessed through UV-visible spectroscopy and particle size distribution. The results showed that 20 mL of plant extract, 80 mL of AgNO3, pH 08, 100 °C temperature were the optimum reaction conditions under which we obtained the smallest Ag-NPs (7 nm). The scanning electron microscopy and X-ray diffraction analysis confirmed the spherical and crystalline nature of Ag-NPs. The antibacterial activity assay demonstrated a high antibacterial effect of Ag-NPs against S. aureus, P. mirabilis, K. pneumoniae and P. aeruginosa, and that impact was greater with smaller-sized nanoparticles (7 nm). This study shows that leaf extract of C. monogyna is a possible medium for the green fabrication of Ag-NPs, and control over reaction factors can establish the characteristics and antibacterial effectiveness of Ag-NPs.Communicated by Ramaswamy H. Sarma.

9.
Plant Physiol Biochem ; 202: 107935, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37579683

RESUMEN

Drought is the most critical climatic factor instigating severe threats to crop production worldwide. As stress ameliorants, exogenous sodium nitroprusside (SNP) or spermidine (Spd) supply has positive responses in alleviating the drought adversities in crops, however, reports regarding their combined effects is still elusive. Here, the protective role of SNP and Spd to confer drought resistance in sunflower (Helianthus annuus L.) through up-regulation of physiological and metabolic processes was investigated. Plants were foliar sprayed with individual or combined SNP (100 µM) or Spd (100 µM). Drought was induced by keeping the soil at 100% (normal) and 60% (drought stress) field capacity levels. Drought exposure caused a marked decline in relative water content (RWC), excised leaf water retention (ELWR), net photosynthesis (PN), transpiration rate (E), stomatal conductance (gs), and sub-stomatal conductance (Ci) with substantial increase in catalase (CAT), superoxide dismutase (SOD), and peroxidase (POX). SNP plus Spd exhibited a considerable increase in CAT, SOD, and POX activities under drought, and helped the plants to retain optimum water status and gas exchange attributes. Similarly, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were increased significantly to drought; however, a notable decline was recorded in drought prone plants treated with exogenous SNP plus Spd. Moreover, addition of SNP plus Spd under drought caused a remarkable increase in chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll total (Chl t), carotenoids (Car), and growth traits like shoot length (SL), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight (RDW). Combined SNP and Spd application could potentially alleviate the drought-induced damages in sunflower through increased water status (8-10%), antioxidant enzymes (17-28%), chlorophyll pigments (14-21%), and growth performance (12-22%) under drought stress.


Asunto(s)
Helianthus , Espermidina , Espermidina/farmacología , Helianthus/metabolismo , Nitroprusiato/farmacología , Resistencia a la Sequía , Clorofila A , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Superóxido Dismutasa/metabolismo , Agua/metabolismo , Sequías , Estrés Fisiológico
10.
PLoS One ; 18(6): e0286736, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37285364

RESUMEN

Plant performance is mainly estimated based on plant architecture, leaf features and internal microstructural changes. Olive (Olea europaea L.) is a drought tolerant, oil yielding, and medium sized woody tree that shows specific structural and functional modifications under changing environment. This study was aimed to know the microstructural alteration involving in growth and yield responses of different Olive cultivars. Eleven cultivars were collected all over the world and were planted at Olive germplasm unit, Barani Agricultural Research Institute, Chakwal (Punjab) Pakistan, during September to November 2017. Plant material was collected to correlate morpho-anatomical traits with yield contributing characteristics. Overall, the studied morphological characters, yield and yield parameters, and root, stem and leaf anatomical features varied highly significantly in all olive cultivars. The most promising cultivar regarding yield was Erlik, in which plant height seed weight and root anatomical characteristics, i.e., epidermal thickness and phloem thickness, stem features like collenchymatous thickness, phloem thickness and metaxylem vessel diameter, and leaf traits like midrib thickness, palisade cell thickness a phloem thickness were the maximum. The second best Hamdi showed the maximum plant height, fruit length, weight and diameter and seed length and weight. It also showed maximum stem phloem thickness, midrib and lamina thicknesses, palisade cell thickness. Fruit yield in the studied olive cultivars can be more closely linked to high proportion of storage parenchyma, broader xylem vessels and phloem proportion, dermal tissue, and high proportion of collenchyma.


Asunto(s)
Olea , Olea/química , Frutas , Árboles , Fenotipo , Semillas
11.
Saudi J Biol Sci ; 30(1): 103487, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36387031

RESUMEN

Background: Fabricating zinc oxide nanoparticles (ZnO-NPs) from plant extracts is a cost-effective, safe, and environmentally friendly alternative to established chemical procedures. This study was aimed at the environmentally friendly fabrication of ZnO-NPs from plant extract. An additional objective was to investigate the antibacterial and antioxidant activity of these biosynthesized ZnO-NPs. Methods: ZnO-NPs were fabricated using the leaf extract of Ailanthus altissima, as an eco-friendly approach. The physicochemical properties of ZnO-NPs were explored using UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry. The bio-fabricated ZnO-NPs were examined for bactericidal activity against pathogenic bacteria (gram-negative and gram-positive) using the agar well diffusion technique. The antioxidant efficiency of ZnO-NPs was assessed using a DPPH assay. Results: A surface Plasmon peak was recorded at 327 nm, showing the existence of ZnO-NPs in the reaction solution of plant extract and zinc sulfate hexahydrate salt. These nanoparticles were predominantly spherical and capped by different functional groups of biomolecules. Furthermore, ZnO-NPs showed a dose-dependent antibacterial and antioxidant activity. At 20 mg/mL ZnO-NPs, the maximum bactericidal potential of ZnO-NPs was reported against Staphylococcus aureus (201.2 mm). ZnO-NPs have an IC50 value of 78.23 µg/mL, indicating that they are an effective antioxidant. Conclusion: This research presents an environmentally acceptable method for producing spherical ZnO-NPs with high antibacterial and antioxidant activities. These bio-fabricated ZnO-NPs could be a good option for applications in medicine and the healthcare industry.

12.
Molecules ; 27(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36364438

RESUMEN

Nanotechnology is the study and control of materials at length scales between 1 and 100 nanometers (nm), where incredible phenomena enable new applications. It affects all aspects of human life and is the most active research topic in modern materials science. Among the various metallic nanoparticles used in biomedical applications, silver nanoparticles (AgNPs) are among the most important and interesting nanomaterials. The aim of this study was to synthesize AgNPs from the leaf extract of Myrsine africana to investigate their antibacterial, antioxidant, and phytotoxic activities. When the leaf extract was treated with AgNO3, the color of the reaction solution changed from light brown to dark brown, indicating the formation of AgNPs. The UV-visible spectrum showed an absorption peak at 438 nm, confirming the synthesis of AgNPs. Scanning electron microscopy (SEM) showed that the AgNPs were spherical and oval with an average size of 28.32 nm. Fourier transform infrared spectroscopy confirms the presence of bio-compound functional groups on the surface of the AgNPs. The crystalline nature of the AgNPs was confirmed by XRD pattern. These biosynthesized AgNPs showed pronounced antibacterial activity against Gram-positive and Gram-negative bacteria, with higher inhibitory activity against Escherichia coli. At 40 µg/mL AgNPs, the highest antioxidant activity was obtained, which was 57.7% and an IC50 value of 77.56 µg/mL. A significant positive effect was observed on all morphological parameters when AgNPs were applied to wheat seedlings under constant external conditions at the different concentrations. The present study provides a cost-effective and environmentally friendly method for the synthesis of AgNPs, which can be effectively used in the field of therapeutics, as antimicrobial and diagnostic agents, and as plant growth promoters.


Asunto(s)
Nanopartículas del Metal , Myrsine , Humanos , Plata/química , Nanopartículas del Metal/química , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Escherichia coli , Espectroscopía Infrarroja por Transformada de Fourier
13.
Molecules ; 27(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144583

RESUMEN

Due to its eco-friendliness, cost-effectiveness, ability to be handled safely, and a wide variety of biological activities, the green plant-mediated synthesis of nanoparticles has become increasingly popular. The present work deals with the green synthesis and characterization of silver nanoparticles (AgNPs) using Elaeagnus umbellata (fruit) and the evaluation of its antibacterial, antioxidant, and phytotoxic activities. For the synthesis of AgNPs, fruit extract was treated with a 4 mM AgNO3 solution at room temperature, and a color change was observed. In UV-Visible spectroscopy, an absorption peak formation at 456 nm was the sign that AgNPs were present in the reaction solution. Scanning electron microscopy and physicochemical X-ray diffraction were used to characterize AgNPs, which revealed that they were crystalline, spherical, and had an average size of 11.94 ± 7.325 nm. The synthesized AgNPs showed excellent antibacterial activity against Klebsiella pneumoniae (14 mm), Staphylococcus aureus (13.5 mm), Proteus mirabilis (13 mm), and Pseudomonas aeruginosa (12.5 mm), as well as considerable antioxidant activity against DPPH with 69% inhibition at an IC50 value of 43.38 µg/mL. AgNPs also exhibited a concentration-dependent effect on rice plants. Root and shoot length were found to be positively impacted at all concentrations, i.e., 12.5 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL. Among these concentrations, the 50 µg/mL concentration of AgNPs was found to be most effective. The plant biomass decreased at higher AgNP exposure levels (i.e., 100 µg/mL), whereas 50 µg/mL caused a significant increase in plant biomass as compared to the control. This study provides an eco-friendly method for the synthesis of AgNPs which can be used for their antibacterial and antioxidant activities and also as growth promoters of crop plants.


Asunto(s)
Elaeagnaceae , Nanopartículas del Metal , Antibacterianos/química , Antioxidantes/química , Frutas/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Plata/química
14.
PLoS One ; 17(8): e0272654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35960769

RESUMEN

BACKGROUND: Biodiversity data is crucial for sustainable development and making decisions regarding natural resources and its conservation. The study goal was to use quantitative ecological approaches to determine the species richness and diversity of wild flora and the ultimate impact of environmental factors on vegetation dynamics. METHODS: Quadrats having sizes of 1×1 for herbs, 5×5 for shrubs, and 10×10 m2 for trees were used. Various phytosociological characteristics were investigated in association with a wide variety of environmental variables. Soil analysis based on texture, moisture, pH, electrical conductivity (EC), organic matter (OM), available potassium (K), and phosphorus (P) were examined. The existing state of vegetation along the River Chenab was assessed using SWOT analysis and a future conservation strategy was devised. RESULTS: One hundred twenty different plant speies were divided into 51 families including 92 dicots, 17 monocots, 6 pteridophytes and 1 bryophyte species. Herbs accounted for 89 followed by shrubs (16 species) and trees (15 species). Correlation analysis revealed a highly positive correlation between relative density and relative frequency (0.956**). Shannon and Simpson's diversity indices elaborated that site 3 and 7 with clay loamy soil had non-significant alpha diversity and varies from site to site. Diversity analysis showed that site 10 was most diverse (22.25) in terms of species richness. The principal coordinate analysis expressed that different environmental variables including OM, soil pH, P, K, and EC affect vegetation significantly, therefore, loamy soil showed presence and dispersal of more vegetation as compared to loam, sandy and sandy loam soils. Further, 170 ppm of available potassium had significant affect on plant diversity and distribution. CONCLUSION: Asteraceae family was found dominant as dicot while poaceae among monocot. Adhatoda vasica was one of the unique species and found in Head Maralla site. For evenness, site 3 had maximum value 0.971. Most of the soil represented loamy soil texture where site 2 and 4 possess high soil moisture content. SWOT analysis revealed strengths as people prefered plants for medicine, food and economic purposes. In weakness, agricultural practices, soil erosion and flooding affected the vegetation. In opportunities, Forest and Irrigation Departments were planting plants for the restoration of ecosystem. Threats include anthropogenic activities overgrazing, urbanization and road infrastructure at Head Maralla, habitat fragmentation at Head Khanki, and extensive fish farming at Head Qadirabad. Future conservation efforts should be concentrated on SWOT analysis outcome in terms of stopping illegal consumption of natural resources, restoration of plant biodiversity through reforestation, designating protected areas and multiplying rare species locally.


Asunto(s)
Ecosistema , Ríos , Biodiversidad , Humanos , Pakistán , Plantas , Potasio , Suelo/química , Árboles
15.
Molecules ; 27(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014433

RESUMEN

Nanotechnology, the science of the recent era, has diverse applications in agriculture. Selenium (Se) is a non-metal and an essential micronutrient for animals and humans. In this study, selenium nanoparticles (SeNPs) were biosynthesized by using Olea ferruginea fruit extracts. The size, shape, chemical nature, and identification of functional groups involved in the synthesis of SeNPs were studied by UV-visible spectroscopy, Scanning Electron Microscope (SEM), and Fourier Transform Infra-Red (FTIR) spectrometry. SeNP synthesis was confirmed by an absorption peak at 258 nm by UV-visible spectroscopy. SEM showed that SeNPs were spherical, smooth, and between 60 and 80 nm in size. FTIR spectrometry confirmed the presence of terpenes, alcohols, ketones, aldehydes, and esters as well as phyto-constituents, such as alkaloids and flavonoids, that possibly act as reducing or capping agents of SeNPs in an aqueous solution of Olea ferruginea. Antimicrobial activity was examined against bacterial pathogens, such as Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermitis, as well as fungal pathogens, such as Aspergillus niger and Fusarium oxysporum, by using the well-diffusion method. Antioxidant activity was observed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ABTs assay, and reducing power assay. At a higher concentration of 400 ppm, biosynthesized SeNPs showed an inhibition zone of 20.5 mm, 20 mm, 21 mm, and 18.5 mm against Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermitis, respectively. Similarly, SeNPs also demonstrated a zone of inhibition against Aspergillus niger and Fusarium oxysporum of 17.5 and 21 mm, respectively. In contrast to Olea ferruginea fruit extracts, Olea ferruginea-mediated SeNPs demonstrated strong antimicrobial activity. By performing the DPPH, ABTs, and reducing power assay, SeNPs showed 85.2 ± 0.009, 81.12 ± 0.007, and 80.37 ± 0.0035% radical scavenging potential, respectively. The present study could contribute to the drug development and nutraceutical industries.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas , Olea , Selenio , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Escherichia coli , Frutas , Fusarium , Humanos , Nanopartículas del Metal/química , Nanopartículas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Selenio/química , Selenio/farmacología , Staphylococcus aureus
16.
BMC Chem ; 16(1): 64, 2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030245

RESUMEN

Recently, an interest has surged in utilizing indigenous medicinal plants to treat infectious illnesses and extract bioactive substances, highlighting the need to analyze medicinal plants for phytochemicals and bioactivities. The present study was aimed to evaluate the impact of different solvent systems (aqueous, ethanol, and methanol) used for extraction on total phenolics, total flavonoids, antioxidant, and antibacterial activity of three medicinal plants of Azad Kashmir (Achillea millefolium, Bergenia ciliata, and Aloe vera). High phenolic content was found in methanol extracts of B. ciliata (27.48 ± 0.58 mg GAE/g dry weight), A. vera (25.61 ± 0.33 mg GAE/g dry weight), and A. millefolium (24.25 ± 0.67 mg GAE/g dry weight). High flavonoid content was obtained in the ethanol extract of A. millefolium (27.13 ± 0.64 mg QE/g dry weight), methanol extract of B. ciliata (17.44 ± 0.44 ± 0.44 mg QE/g dry weight), and the methanol extract of A. vera (14.68 ± 0.67 mg QE/g dry weight). Strong 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) was obtained with a methanol extract of B. ciliata (IC50 = 60.27 ± 0.20 µg/mL). With a zone of inhibition and a minimum inhibitory concentration ranging from 10.00 ± 0.66 to 24.67 ± 1.21 mm and 78 to 625 µg/mL, respectively, all of the studied plants demonstrated notable antibacterial activity against Staphylococcus aureus and Escherichia coli. A. vera showed greater antibacterial activity as compared to other plants under study while methanolic extract showed greater antibacterial activity than ethanolic and aqueous extract. The findings of this research support the use of these medicinal plants to treat a variety of diseases.

17.
Saudi J Biol Sci ; 29(5): 3244-3254, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844385

RESUMEN

Background: The upper belt of Azad Kashmir is a hilly, mountainous, and remote area where the indigenous communities mainly believe in traditional medicines for the treatment of different ailments. This study aimed to conserve scientifically and culturally important medicinal knowledge of Primula species in Azad Kashmir, Western Himalaya, Pakistan. The additional objective was to evaluate the antibacterial activity of these plants against pathogenic bacteria. Methods: The ethnomedicinal data of Primula species was explored by conducting structured interviews with 40 informants of the study area, especially asking about the medicinal uses of Primula species. The indigenously used Primula species were further analyzed for their antibacterial activity against both gram-positive and gram-negative bacteria by using disc diffusion assay supplemented with a more robust minimum inhibitory concentration assay. Results: Ethnomedicinal data revealed that indigenous communities living in upper regions of Azad Kashmir use 5 Primula species for the treatment of various disorders. The highly cited disease category was ophthalmic disorders. P. denticulata and P. macrophylla were the most cited plant species with higher use reports such as 104 and 93, respectively. One or more extracts of different parts of Primula species showed a noteworthy antibacterial activity against one or more tested bacteria. Conclusion: This study provides novel information regarding several categories of traditional uses and antibacterial activity of Primula species in Azad Kashmir, Western Himalaya. The need for novel and more effective drugs derived from natural products is more important than ever, making future studies on herbal remedies both justified and urgently required.

18.
PLoS One ; 17(6): e0269987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35727761

RESUMEN

Today, different types of nanoparticles (NPs) are being synthesized and used for medical and agricultural applications. In this study, copper nanoparticles (CuNPs) were synthesized using the aqueous extract of mint (Mentha longifolia L.). For the characterization of CuNPs, UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry were used. The UV-Visible absorption peak at 558 nm confirmed the formation of CuNPs. The XRD pattern confirmed the phase-centered crystalline nature of CuNPs. FTIR analysis showed the O-H, Cu-H and C-C bonds, indicating the active role of these functional groups as reducing agents of Cu ions to CuNPS. The synthesized NPs were found to have an almost spherical shape with an average size of 23 nm. When applied to wheat, a condition dependent effect of CuNPs was found. Variety 18-Elite Line 1, Elite Line 3, and 18-Elite Line 6 showed maximum germination and growth rate at 50 mg CuNPs/L, while variety 18-Elite Line 5 showed that increase at 25 mg CuNPs/L. Beyond these concentrations, the seed germination and growth of wheat declined. In conclusion, the application of CuNPs showed a beneficial effect in improving the growth of wheat at a certain concentration.


Asunto(s)
Cobre , Nanopartículas del Metal , Cobre/química , Germinación , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Triticum , Difracción de Rayos X
19.
Physiol Mol Biol Plants ; 27(10): 2345-2355, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34744370

RESUMEN

Carbohydrate metabolism in plants is influenced by thermodynamics. The amount of carbon dioxide (CO2) in the atmosphere is expected to rise in the future. As a result, understanding the effects of higher CO2 on carbohydrate metabolism and heat stress tolerance is necessary for anticipating plant responses to global warming and elevated CO2. In this study, five wheat cultivars were exposed to heat stress (40 °C) at the onset of anthesis for three continuous days. These cultivars were grown at two levels of CO2 i.e. ambient CO2 level (a[CO2], 380 mmol L-1) and elevated CO2 level (e[CO2], 780 mmol L-1), to determine the interactive effect of elevated CO2 and heat stress on carbohydrate metabolism and antioxidant enzyme activity in wheat. Heat stress reduced the photosynthetic rate (Pn) and grain yield in all five cultivars, but cultivars grown in e[CO2] sustained Pn and grain yield in contrast to cultivars grown in a[CO2]. Heat stress reduced the activity of ADP-glucose pyrophosphorylase, UDP-glucose pyrophosphorylase, invertases, Glutathione reductase (GR), Peroxidase (POX), and Superoxide dismutase (SOD) at a[CO2] but increased at e[CO2]. The concentration of sucrose, glucose, and fructose mainly increased in tolerant cultivars under heat stress at e[CO2]. This study confirms the interaction between the heat stress and e[CO2] to mitigate the effect of heat stress on wheat and suggests to have in-depth knowledge and precise understanding of carbohydrate metabolism in heat stressed plants in order to prevent the negative effects of high temperatures on productivity and other physiological attributes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01080-5.

20.
Physiol Mol Biol Plants ; 27(9): 2115-2126, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34629782

RESUMEN

With the recent developments in the field of nanotechnology, the biosynthesis of nanoparticles has increased tremendously. Silver nanoparticles (SNPs) are among the most synthesized nanoparticles and this extensive synthesis can elevate the amounts of SNPs in the environment, which, consequently, pose a serious threat to the ecosystem and can bring unwanted environmental effects. As plants are an important part of ecosystem, investigation of toxic effects of SNPs on plants is particularly interesting. This study evaluates the potential risk of SNPs interaction with plants. For this, seeds of Vigna radiata L. were screened in presence of SNPs (20 mgL-1) using the germination, growth, and biochemical parameters as a phototoxicity criterion. The 19.57 nm average-sized SNPs were synthesized via the biosynthesis method. These biosynthesized SNPs were then applied on two varieties of V. radiata (Azri and High cross 404) and found to have variety dependent toxic effects on seed germination, growth, and biochemical parameters. Seed germination, root length, shoot length, fresh weight, chlorophyll, carotenoid, sugar content, and total proteins were reduced by 20, 46, 50, 18, 55, 62, 82, and 67%, respectively, in High cross 404, when compared with control (distilled water). The variety Azri was less sensitive than the variety High cross 404. In conclusion, the results demonstrated that SNPs affect seed germination and seedling growth when internalized and accumulated in plants, revealing that SNPs were responsible for the side effects. More in-depth research is required, in the form of different concentrations of SNPs or different plant species, to draw a logical conclusion and develop legislation about the safe use of biosynthesized SNPs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01073-4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA